TRACK RECORD OF FIXED AND FLOATING PLATFORMS

BY

GREEN PALM MARINE CONSULTANCY FZE

Ultramarine
FIXED AND FLOATING PLATFORM PROJECTS
1. ERAWAN ADDITIONAL LIVING QUARTERS PROJECT

Client: TECHNIP / CHEVRON
Year: 2008

Scope of Work:
- Cabin Lift Analysis
- Cabin Skidding Analysis
- Inplace Analysis
- HVAC-WH Lift Analysis

2. MAERSK OIL QATAR - BLOCK 5 UTILITY PLATFORMS & BRIDGES

Client: MAERSK OIL QATAR
Year: 2007

Scope of Work:
- Inplace analysis
- Fatigue analysis
- Earthquake Analysis
3. AL–SHAHEEN BLOCK 5 JACKETS

Client: MAERSK OIL QATAR
Year: 2007

Scope of Work:
• In-service analysis, Fatigue, Earthquake
• Lift analysis

4. WELLHEAD PLATFORM JALILAH A

Client: DSME
Year: 2007

Scope:
• Installation of Jackets
• On Bottom analysis
5. GIRASSOL PROJECT – STRUCTURAL ANALYSIS OF INTEGRATED DECK

Client: MAREAL Engineering & CONSULTANCY
Year: 2014

Scope of Work:
The purpose of the study is to check the structural elements of the integrated deck under operating FPSO conditions. The hull is fully modelled structurally. The analysis considers the flexibility of the hull. The main tasks are:
• Modeling of the hull for hydrodynamic and structural purposes
• Modeling of the tank capacities
• Modeling of the integrated deck that supports the topsides
• Conversion from Fastsrudl of all the topsides
• Description of the loading conditions, considering operating cases as well as maintenance cases
• Structural runs of the whole model for all loading conditions
• Frequency code checks of the integrated deck members
• Stability booklet
6. EHRA FPSO – STRUCTURAL FATIGUE ANALYSIS

Client: SAIPEM
Year: 2013

Scope of Work:
Fatigue analysis of the 21 topsides of the Ehra FPSO for in-place conditions. The hull is fully modelled structurally. The analysis considers the flexibility of the hull.
The following tasks are done:
• Modeling of the hull for hydrodynamic and structural purposes
• Modeling of the tank capacities
• Conversion from Fastsrul of all the topsides
• Structural runs of all loading conditions
• Fatigue checks
7. SOUTH PARS OIL LAYER PROJECT – MOORING STUDY

Client WSI International
Year 2006

Scope of Work:
• The purpose of the study is to investigate feasibility of certain mooring configurations and systems for a tanker based FPSO for the South Pars Oil Development offshore Iran.
• The study will examine the mooring of two tanker sizes of standard dimensions (100 KDwt and 140KDwt) in the prevailing metaocean conditions in a water depth of approximately 70 meters.
• The study will consider two mooring configurations for each tanker, i.e. spread mooring and turret mooring.
8. ROSALIRIO PROJECT – LIFT ANALYSIS

Client: Technip
Year: 2006

Scope of Work:
• The purpose of the study is to analyze the lifting installation of a module on top of the Girassol FPSO from a typical crane barge.
• A dynamic analysis is carried out to identify the allowable environment conditions based on the motions of the two vessels.
• The aim of the study is to determine limiting seastates based on criteria related to impact of the module supports on the FPSO integrated deck.
9. WELLHEAD FLOATER – HYDRODYNAMIC & MOTIONS

Client: Bouygues Offshore
Year: 2010

Scope of Work:
- Parametric study on the dimensions of the floater (300 m length) to cope with environment conditions offshore Brazil.
10. N’KARIKA PROJECT – HYDRODYNAMIC STUDY

<table>
<thead>
<tr>
<th>Client</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2012</td>
</tr>
</tbody>
</table>

Scope of Work:
The purpose of the analysis is to evaluate dependency of FPU hull length on the hydrodynamic behavior.
The overall principle of the study is to consider the *** FPU as a basis and vary the length by steps of 15 m.
Including the *** one, a total of 6 FPUs are considered. The points to compare for the six floaters are:
• Transfer functions of motions (R.A.O.)
• Maximum (1/1000 values) motions for 1m significant height spectrum for two points of the hull
• Compared g forces on two points of the hull for above spectrum
• Maximum (1/1000 values) motions for USAN type spectrum
• Relative elevations of two points of the hull for USAN spectrum